Comparative and medical genomics
Master Sciences du vivantParcours Bioinformatique et bioimagerie structurale (BBS)
Catalogue2024-2025
Description
Objectives in terms of knowledge (course content) :
- Basic concepts and methodologies used in comparative genomics (orthology, paralogy, synteny, evolutionary rates…)
- Evolution of prokaryotic and eukaryotic genomes (mechanisms and evolutionary trends)
- Applied Comparative Genomics: phylogenetic footprinting, phylogenetic profiles, prediction of functional links, identification of targets by genotype/phenotype correlations…
- Population genomics
- Personal and medical genomics: variations and polymorphism, types of personal genomic data, detection and prioritization of variants, examples of large-scale projects
Compétences visées
Objectives in terms of acquired skills :
- Mastery of main internet resources dedicated to comparative genomics
- Ability to mobilize multidisciplinary knowledge
- Ability to develop an integrative strategy to answer a complex biological problem
- Ability to analyse personal NGS data to identify variants (quality, mapping, variant calling)
- Ability to prioritize candidates to identify disease–causing variants
- Capacity for a critical analysis of high-throughput data
- Awareness of ethical issues raised by patient data
Bibliographie
- 1000 Genomes Project Consortium, Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L., McCarthy, S., McVean, G.A., et al. (2015). A global reference for human genetic variation. Nature 526, 68–74.
- Biagini, S.A., Ramos-Luis, E., Comas, D., and Calafell, F. (2020). The place of metropolitan France in the European genomic landscape. Hum Genet 139, 1091–1105.
- Eilbeck, K., Quinlan, A., and Yandell, M. (2017). Settling the score: variant prioritization and Mendelian disease. Nat Rev Genet 18, 599–612.
- Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J., Castelle, C.J., Butterfield, C.N., Hernsdorf, A.W., Amano, Y., and Ise, K. (2016). A new view of the tree of life. Nature Microbiology 1, 16048.
- Karczewski, K.J., and Snyder, M.P. (2018). Integrative omics for health and disease. Nat Rev Genet 19, 299–310.
- Nevers, Y., Defosset, A., and Lecompte, O. (2020). Orthology: Promises and Challenges. In Evolutionary Biology—A Transdisciplinary Approach, P. Pontarotti, ed. (Cham: Springer International Publishing), pp. 203–228.
- Rehm, H.L. (2017). Evolving health care through personal genomics. Nat Rev Genet 18, 259–267.
- Spang, A., Saw, J.H., Jørgensen, S.L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A.E., Eijk, R., Schleper, C., Guy, L., and Ettema, T.J.G. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179.
- Tam, V., Patel, N., Turcotte, M., Bossé, Y., Paré, G., and Meyre, D. (2019). Benefits and limitations of genome-wide association studies. Nat Rev Genet 20, 467–484.
Contacts
Responsable(s) de l'enseignement
MCC
Les épreuves indiquées respectent et appliquent le règlement de votre formation, disponible dans l'onglet Documents de la description de la formation.
- Régime d'évaluation
- CT (Contrôle terminal, mêlé de contrôle continu)
- Coefficient
- 1.0
Évaluation initiale / Session principale - Épreuves
Libellé | Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Coéfficient de l'épreuve | Note éliminatoire de l'épreuve | Note reportée en session 2 |
---|---|---|---|---|---|---|
Written exam | CT | ET | 90 | 0.4 | ||
Written exam | CC | ET | 30 | 0.27 | ||
Rapport de TD | CC | PE | 180 | 0.33 |
Seconde chance / Session de rattrapage - Épreuves
Libellé | Type d'évaluation | Nature de l'épreuve | Durée (en minutes) | Coéfficient de l'épreuve | Note éliminatoire de l'épreuve |
---|---|---|---|---|---|
Comparative and medical genomics | CT | ET | 90 | 1.00 |